III SEMESTER

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester - III					
	ENGINEERIN			III	
0.11 . 0.1		n to All	Branches)	1 20	
Subject Code	: 15MAT31		IA Marks	: 20	
Number of Lecture Hours/Week	: 04		Exam Marks	: 80	
Total Number of Lecture Hours	: 50		Exam Hours	: 03	
	1	Credits -	4		
Course Objectives: T					
Revised Bloom's Tax L4 – Analyzing, L5 –				erstanding, L3	S – Applying,
·	Modules			Teaching Hours	Revised Bloom's Taxonomy (RBT)Leve
Module -1				10 Hours	
N. 1.1. A					
Module -2				10 Hours	
Module -3				10 Hours	

<u> </u>		
Module -4		
	10 Hours	
	10 Hours	
Modulo 5		
Module -5		
	10 Hours	
	10 110013	
Course Outcomes: After studying this course, students will able to:		
Graduate Attributes (as per NBA)		
Question Paper Pattern:		
The question paper will have TEN questions.		
Each full question carry16 marks		
• There will be TWO full questions (with maximum of FOUR sub questions)		nodule.
• Each full question will have sub questions covering all the topics under a m		1 1 . 1 .
• The students will have to answer FIVE full questions, selecting ONE full questions. Text Books:	uestion from	each module.
Text Books.		
Reference Books:		

Dovigod

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS)

Semester - III

ELECTRONIC INSTRUMENTATION AND MEASUREMENTS

(Common to EI, BM & ML)

Subject Code	: 15 EI/BM/ML 32	IA Marks	: 20
Number of Lecture	: 04	Exam Marks	: 80
Hours/Week			
Total Number of	: 50	Exam Hours	: 03
Lecture Hours			

Credits - 4

Course Objectives: This course will enable the students to

- Impart with the knowledge of generalized measurement systems.
- Learn the characteristics of various types of measurement systems and errors in measuring instruments.
- Analyze the circuits for the measurement of Resistance, Capacitance, Inductance, and Frequency.
- Impart with the basic concepts of CRO and its usage for the measurement of various parameters.
- Understand the concepts of Ammeters, Voltmeter and Multimeters
- Understand the importance of Display Devices and Recorders in practical fields

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, and L6 - Creating

Modules		Bloom's Taxonomy (RBT)Leve
Module -1 A).Measurements: introduction, Significance of measurements, methods of measurements, instruments and measurement systems, Functions of instruments and measurement systems, Applications of measurement systems. Measurement Errors: Introduction Gross errors and systematic errors, Absolute and relative errors, basic concepts of accuracy, Precision, Resolution and Significant figures, Measurement error combinations. (relevant problems)	10 Hours	L1,L2
Module -2 A). Ammeters, Voltmeter and Multimeters: Introduction, DC ammeter principle only, DC voltmeter, Multi-range voltmeter, Extending voltmeter ranges, Loading, Peak responding and True RMS voltmeters. (relevant problems) B). Digital Voltmeters: Introduction, Ramp type, Dual slope integrating type (V–T), integrating type (V–F) and Successive approximation type (relevant problems).	10 Hours	L1,L2,L3, L5

Digital Instruments: Introduction, Block diagram of a Basic Digital		
Multi-meter. Digital frequency meters: Basic circuit of a Digital		
frequency meter, Basic circuit for frequency measurement.		
	Ī	
Module -3		
A). Oscilloscopes: Introduction, Basic principles, CRT features,		
Block diagram and working of each block, Typical CRT connections,		
Dual beam and dual trace CROs, Electronic switch.		
B).Special Oscilloscopes:	10 Hours	L1,L2,L3,
Delayed time-base oscilloscopes : Need for a time delay & delayed-	10 Hours	L4
time-base system.		
Analog storage oscilloscopes: Need for trace storage, bistable storage		
CRT, Variable persistence storage CRT.		
Digital storage oscilloscopes : Basic DSO operation only.		
<u> </u>	ı	
Module -4		
A). Signal Generators :		
Introduction, Fixed and variable AF oscillator, Standard signal		
generator, Modern laboratory signal generator, AF sine and Square		
wave generator, Function generator, Square and Pulse generator.	10 Hours	L1,L2,L3,L
B). Bridge Circuits for Measurement of R, L & C:	10110015	5,L6
DC bridges: Introduction, Wheatstone's bridge, Kelvin Bridge		
AC bridges: Capacitance Comparison Bridge, inductance Comparison		
Bridge, Maxwell's bridge, Schering Bridge. (relevant problems)		
Briage, maxwen's oriage, benefing Briage. (relevant problems)		
Module -5		
Display Devices and Recorders:		
Introduction, electrical indicating instruments, digital instruments,		
digital display methods, digital display unit. Segmental Displays:		L1,L2,L3,L
Seven segmental display, dot matrices, LED, LCD, decade counting	10 Hours	5
assemblies, display systems. Recorders: Recording requirements,		3
analog recorders- Graphic recorders, strip chart recorders & its types,		
X-Y recorder, Magnetic & Digital tape recorders.		

- Analyze instrument characteristics, errors and generalized measurement system.
- Analyze and use the circuit for the measurement of R, L, C, F, I, V etc
- Use of Ammeters, Voltmeter and Multimeters and CRO for measurement
- Analyze and interpret different signal generator circuits for the generation of various waveforms
- Understand and use different display devices and recorders

Graduate Attributes (as per NBA)

- Engineering knowledge
- Problem analysis
- Design & Development of Solutions
- Modern tool usage

Question Paper Pattern:

- The question paper will have TEN questions.
- Each full question carry16 marks
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. "Electronic Instrumentation", H. S. Kalsi, TMH, 2004 (Module- 2,3 & 4)
- 2. "Electronic Instrumentation and Measurements", David A Bell, PHI / Pearson Education2006/ Oxford Higher Education, 2013. (Module 1 & 3)
- 3. Electrical and Electronic Measurements and Instrumentation A. K. Sawhney, 17th Edition (Reprint 2004), Dhanpat Rai & Co. Pvt. Ltd., 2004.(Module- 1 & 5)

- 1. "Principles of Measurement Systems", John P. Beately, 3rd Edition, Pearson Education, 2000
- 2. "Modern Electronic Instrumentation and Measuring Techniques", Cooper D & A D Helfrick, PHI, 1998.

B.E. Electronics and Instrumentation Engineering (EI) **Choice Based Credit System (CBCS) Semester - III** ANALOG ELECTRONIC CIRCUITS (Common to EI, BM & ML) Subject Code : 15 EI/BM/ML 33 IA Marks : 20 : 80 NumberofLectureHo : 04 Exam Marks urs/Week Total Number : 50 **Exam Hours** : 03 ofLecture Hours

Credits - 4

Course Objectives: This course will enable the students

- With the knowledge of Electronic devices.
- To know modeling of BJT and FET for analysis and to Design of BJT Amplifier, Hybrid Equivalent and Hybrid π Models.
- To know construction and characteristics of JFETs and MOSFETs.
- Describe various types of FET biasing, and Demonstrate use of FET amplifiers.
- Demonstrate and Generalize Frequency response of BJT and FET amplifiers at various frequencies.
- Analyze Power amplifier circuits in different modes of operation.
- To know the concept of Feedback and its effect on amplifier circuits and Oscillator circuits-operation and generation of low and high frequency signal using BJT/FET/Op-amp.

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analysing, L5 – Evaluating, and L6 - Creating

Modules		Revised Bloom's Taxonomy (RBT)Level
Module -1 BJT AC Analysis BJT modeling, re transistor model: Common Emitter Configuration, Voltage-Divider Bias, CE Emitter-Bias Configuration (Excluding Pspice Analysis), Emitter Follower Configuration, Determining Current Gain, Effect of R_L and R_S , Cascaded Systems, RC- Coupled BJT Amplifier, Cascade Connection, Darlington Connection. The Hybrid Equivalent model, Approximate Hybrid Equivalent Circuit, Fixed bias configuration, Voltage-Divider configuration. (Relevant problems on above topics) Complete Hybrid Equivalent Model and Hybrid π Model.		L1 L2
Module -2 Field Effect Transistors Introduction, Construction and Characteristics of JFETs, Transfer Characteristics, Applying Shockley's Equation. Depletion Type MOSFET: Basic Construction, Basic Operation and Characteristics, P-Channel Depletion Type MOSFET and Symbols, Enhancement Type MOSFET: Basic Construction, Basic Operation	10 Hours	L1 L2

and Characteristics, P-Channel Enhancement Type MOSFETs and Symbols. Relevant problems on above topics, CMOS-Basics. FET Biasing Introduction, Fixed-Bias Configuration, Self-Bias Configuration, Voltage-Divider Biasing. Relevant problems on above topics		
Module -3 FET Amplifiers Introduction, JFET Small Signal Model, JFET AC equivalent Circuit, Fixed- Bias Configuration, Self-Bias Configuration, Voltage-Divider Configuration, Source Follower Configuration. Relevant problems on above topics. BJT and JFET Frequency Response: Introduction, General Frequency Considerations, Low Frequency Response of BJT Amplifier, Low Frequency Response of FET Amplifier, Miller Effect Capacitance, High Frequency Response of FET Amplifier, Multistage frequency effects. Relevant problems on above topics. (Excluding P-spice Analysis)	10 Hours	L1, L2, L3
Module -4 Power Amplifiers Introduction: Definitions and Amplifier Types, Series Fed Class A Amplifier, Transformer Coupled Class A Amplifier, Class B Amplifier operation. Class B amplifier circuits: Transformer-Coupled Push-Pull Circuits, Complementary –Symmetry Circuits only, Amplifier Distortion, Class C and Class D Amplifier. Relevant Problems on above topics.	10 Hours	L1,L2, L3,L4
Module -5 Feedback and Oscillator Circuits Feedback Concepts, Feedback Connection Types, Effects of negative feedback, Oscillator operation, Phase Shift Oscillator: FET Phase Shift Oscillator, Transistor Phase Shift Oscillator, Wien Bridge Oscillator, Tuned oscillator Circuit: FET and Transistor Colpitts Oscillator, FET and Transistor Hartley Oscillator, Crystal oscillator. Relevant Problems on above topics Unijunction transistor oscillator.	10 Hours	L2, L3

- Explain the Working principles, characteristics and basic applications of BJT and FET.
- Modeling of BJT/FET for analysis
- Design Single stage, Multistage amplifier, with and without feedback
- AnalyzeFrequency response of BJT and FET.
- Acquire the knowledge of classifications of Power amplifier, operation, and able to design power amplifier.
- Apply the knowledge gained in the design of BJT/FET circuits in Oscillators to generate different

frequency signals.

Graduate Attributes (as per NBA)

- Engineering Knowledge
- Problem Analysis
- Design / development of solutions (partly)
- Interpretation of data

Question Paper Pattern:

- The question paper will have TEN questions.
- Each full question carry 16 marks
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

 Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit theory", Pearson, 10th Edition, 2009, ISBN:9788131727003

- 1. David A. Bell, "Electronic Devices and Circuits", Oxford University Press.
- 2. I. J. Nagrath, "Electronics: Analog and Digital", PHI

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester - III				
			N AND HDL	
	(Common	to EI, l	BM & ML)	
Subject Code	: 15 EI/BM/ML 34		IA Marks	: 20
Number of Lecture	: 04		Exam Marks	: 80
Hours/Week				
Total Number of	: 50		Exam Hours	: 03
Lecture Hours				

Credits - 4

Course Objectives: This course will enable the students to

- To impart the concepts of simplifying Boolean expression using K-map techniques and provide an understanding of logic families
- To impart the concepts of designing and analyzing combinational logic circuits
- To provide an understanding for the concepts of HDL-Verilog, data flow and behavioral models for the design of digital systems.
- To impart design methods and analysis of sequential logic circuits

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analysing, L5 – Evaluating, and L6 - Creating

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT)Lev el
Module -1	10 Hours	L2,L3,L4
Principles of combinational logic: Definition of combinational logic, Canonical forms, Generation of switching equations from truth tables, Karnaugh maps- up to 4 variables, Quine-McCluskey minimization technique		
Introduction to Verilog: Structure of Verilog module, Operators, data types, Styles of description- Data flow description, Behavioral description, Implement logic gates, half adder and full adder using Verilog data flow description.		
Module -2	10 Hours	L1,L2,L3
Combinational Functions: Arithmetic Operations: Adders and subtractors-cascading full adders, Look ahead carry, Binary Comparators – 2 bit and 4 bit, two bit Multiplier, Verilog Description of for above circuits. Multiplexers- Realization of 2:1, 4:1 and 8:1 using gates & Applications. Demultiplexers: - Realization of 1:2 1:4 and 1:8 using basic gates & Applications Verilog Behavioral description: Structure, variable assignment statement, sequential statements, loop statements, Verilog behavioral description of Multiplexers (2:1,4:1,8:1) and De-multiplexers		

10 Hours	L1,L2
10 Hours	L2,L3,L6
10 Hours	L2,L3,L4,
	L6
	10 Hours

- Simplify Boolean functions using K-map and Quine-McCluskey minimization technique
- Analyze, design and write verilog code for combinational logic circuits. (MUX, De-MUX, adder and subtractor, and comparator circuits)
- Analyze and design code converters, encoders and decoders.
- Analyze and design of synchronous sequential circuits
- Analyze sequential circuits, Moore/Mealy machines

Graduate Attributes (as per NBA)

- Engineering knowledge
- Problem analysis
- Design & Development of Solutions
- Modern tool usage

Question Paper Pattern:

- The question paper will have TEN questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Digital Logic Applications and Design by John M Yarbrough, Thomson Learning,2001 (Modules 1,2,3,4,5 –Logic design)
- 2. HDL Programming VHDL and Verilog by Nazeih M. Botros, 2009 reprint, Dreamtech press.(Modules 1,2,3,4,5 Verilog description)

- 1. Charles H Roth, Jr., "Fundamentals of logic design", Cengage Learning
- 2. Digital Principals and Design Donald D Givone, 12th reprint, TMH, 2008
- 3. Logic Design, Sudhakar Samuel, Pearson/Saguine, 2007
- 4. Fundamentals of HDL- Cyril P R Pearson/Sanguin 2010

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester - III TRANSDUCERS AND INSTRUMENTATION				
Subject Code	: 15EI35		IA Marks	: 20
Number of Lecture	: 04		Exam Marks	: 80
Hours/Week				
Total Number of	: 50		Exam Hours	: 03
Lecture Hours				

Credits - 4

Course Objectives:

- To provide the fundamental knowledge of transducers, instrumentation and measurement systems.
- To understand the functional elements of instrumentation/measurement systems.
- To impart the knowledge of static and dynamic characteristics of instruments, and understand the factors in selection of instruments for measurement.
- To discuss the principle, design and working of transducers for the measurement of displacement, level, strain, force, torque, pressure, sound and speed.

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analysing, L5 – Evaluating, and L6 - Creating

Modules		Revised Bloom's Taxonomy (RBT)Level
Module -1 Classification and Functional Elements of Instrument/ measurement system: Measurement, significance of measurement, instruments and measurement systems, mechanical, electrical and electronic instruments, Deflection & Null type instruments and their comparison, Analog and digital modes of operation, functions of instruments and measurement systems, applications of measurement systems, Elements of generalized measurement system, Input-output configuration of measuring instruments and measurement systems, methods of correction for interfering and modifying inputs. Transducers, Classifications of transducers-primary & secondary, active & passive, analog and digital transducers.	10 Hours	L1, L2
Module -2 Static and Dynamic Characteristics: Static calibration and error calibration curve, accuracy and precision, indications of precision, static error, scale range and scale span, reproducibility and drift, repeatability, signal to noise ratio, sensitivity, linearity, hysteresis, threshold, dead zone and dead time, resolution, signal to noise ratio, factors influencing the choice of transducers/instruments. Dynamic response – dynamic characteristics, time domain analysis & different types of inputs, frequency domain analysis. Time domain response – zero order system, first order electrical system, response	10 Hours	L1, L2, L3, L4

of a first order system to step & ramp input, Second order system, response of a second order system to step input, time domain specifications, frequency response of first and second order system.		
Module -3 Measurement of Displacement: Introduction, Principles of Transduction, Variable resistance devices, variable Inductance Transducer, Variable Capacitance Transducer, Hall Effect Devices, Proximity Devices, Digital Transducer Measurement of Level: Capacitance probes, conductivity probes, differential pressure level detector, float level devices, optical level switches, radiation level sensor, ultrasonic level detector, thermal level sensors	10 Hours	L1, L2, L3, L4
Module -4 Measurement of Strain: Introduction, Factors affecting strain measurements, Types of Strain Gauges, Theory of operation of resistance strain gauges, Types of Electrical Strain Gauges – Wire gauges, unbounded strain gauges, foil gauges, semiconductor strain gauges (principle, types & list of characteristics only), Materials for Strain Gauges, Strain gauge Circuits – Wheatstone bride circuit, Applications. Measurement of Force & Torque: Introduction, Force measuring sensor – Load cells – column types devices, proving rings, cantilever beam, pressductor. Hydraulic load cell, Electronic weighing system. Torque measurement: Absorption type, transmission type, stress type & deflection type.	10 Hours	L1, L2, L3, L4
Module -5 Measurement of Pressure: Introduction, Diaphragms, Other elastic elements, Transduction methods – potentiometric device, strain gauge transducer, variable reluctance, LVDT type, variable capacitance device (principle & working, no derivation), force balance transducer with analysis, thin-film pressure transducers, piezoelectric pressure transducer, pressure multiplexer, pressure calibration. Miscellaneous Sensors: Noise (sound) Sensors, Speed Sensors, Thickness Measurement, Weather stations	10 Hours	L1, L2, L3, L4

- Define the transducer, instrument, measurement and classify different types of transducers
- Explain the functional elements of instrumentation / measurement systems
- Discuss the input-output configuration of measurement systems
- Define, interpret and analyze the static and dynamic characteristics of instruments
- Explain the principle, design and analyze the transducers for the measurement of displacement, level, strain, force, torque, pressure, sound and speed

Graduate Attributes (as per NBA)

- Engineering knowledge
- Problem analysis
- Design & Development of Solutions
- Engineer and society
- Environment & sustainability
- Lifelong learning

Question Paper Pattern:

- The question paper will have TEN questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Electrical and Electronic Measurements and Instrumentation A. K. Sawhney, 17th Edition (Reprint 2004), DhanpatRai& Co. Pvt. Ltd., 2004. (Module 1 & 2)
- 2. Instrumentation: Devices and Systems- C. S. Rangan, G. R. Sarma, V. S. V. Mani, 2nd Edition (32nd Reprint), McGraw Hill Education (India), 2014. (Module 3-Displacement measurement, Module 4, Module 5 Measurement of pressure)
- 3. Process Measurement Instrument Engineers Handbook- BelaG.Liptak, Revised Edition, Chilton Book Company, 1982. (Module 3 Level measurement, Module 5- Miscellaneous Sensors)

- 1. Transducers and Instrumentation D.V.S.Murty, 2nd Edition, PHI, 2009.
- 2. Introduction to Measurements and Instrumentation A. K. Ghosh, 2nd Edition, PHI, 2007.
- 3. Instrumentation Measurement and Analysis- B.C.Nakra and K.K.Choudhry, 3rd Edition, McGraw Hill Education (India) Pvt.Ltd. 2009.
- 4. Measurement Systems Application and Design- Ernest O.Doeblin and Dhanesh N Manik, 5th Edition, McGraw Hill, 2007

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester – III (Elective-I)						
NETWORK ANALYSIS (Common to EI, BM & ML)						
Subject Code	: 15 EI/BM/ML 36	IA Marks	: 20			
Number of Lecture Hours/Week	: 04	Exam Mark	: 80			
Total Number of : 50 Exam Hours : 03 Lecture Hours						

Credits - 4

Course Objectives: This course will enable the students to

- To introduce the Basic circuit laws, Network theorems and Analyze the networks.
- To analyze the networks by using optimized methods
- To analyze the network behavior during switching states.
- To realize the network parameters.

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analysing, L5 – Evaluating, and L6 - Creating

	Teachi	Revised Bloom's
Modules	ng Hours	Taxonomy (RBT) Level
Module -1 Basic concepts: Sources of electrical energy, Source transformation & Source shifting, Network reduction using star-delta transformation, loop and node analysis with dependent & independent sources for DC networks, concept of super node and super mesh analysis for only independent sources for DC networks.	10 Hours	L ₁ =Remembering, L ₂ =Understanding, L ₃ =Applying, L ₄ =Analysis.
Module -2 Network theorems: Super position, reciprocity, Millman's theorem (for DC networks), Thevinin's & Norton's theorem (for DC networks), and Maximum power transfer theorems (for AC & DC networks)	10 Hours	L ₁ =Remembering L ₂ =Understanding L ₃ =Applying L ₄ =Analysis
Module -3 Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their representation, evaluation of initial & final conditions in RL, RC & RLC circuits for DC excitations. Two port network parameters: Definitions and modeling of Z, Y, H & transmission parameters.	10 Hours	L_1 = Understanding L_2 = Analyzing L_3 =Applying L_4 =Synthesis
Module -4 Resonant Circuits: Series resonance: Variation of current and voltage with frequency, Selectivity & Bandwidth, Q-factor Parallel resonance: General case-resistance present in both branches, Selectivity & Bandwidth, Maximum impedance conditions with Capacitor, Inductor or	10 Hours	L_1 = Understanding L_2 = Analyzing L_3 =Applying L_4 =Realizing

frequency as variable.		
Module -5		L_1 = Understanding
Network topology : Graph of a network, concepts of: tree & co-tree,	10	L_1 = Onderstanding L_2 = Analyzing
incidence matrix, tie-set & cut-set schedules, Solution of resistive networks using equilibrium equations in matrix form, Principle of		L_3 =Applying
duality.		L ₄ =Evaluation

- Apply the basic concepts (Laws, theorems) of networks to obtain solution.
- Choose the Appropriate/specific technique to analyze the networks.
- Realize and Analyze the network behavior

Graduate Attributes (as per NBA)

- Applying the Engineering concepts to analyze the networks
- Realizing and solving the complex circuits

Question Paper Pattern:

- The question paper will have TEN questions.
- Each full question carry 16 marks
- In each full question, preferably 40% should be related to theoretical concepts/derivations and 60% should be related problems/solutions.
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Engineering Circuit Analysis, William H Hayt et al, McGraw Hill, 8th Edition.
- 2. Networks and Systems, D Roy Choudhury, New Age International Publishers, 3rd Edition.
- 3. Network Analysis, M.E. Van Valkenburg, Prentice-Hall, 3rd Edition.

- 1. Introduction to Electric circuits, Richard C Dorf & James A Svoboda, Wiley, 9th Edition.
- 2. Electric Circuits, Mahmood Nahvi, McGraw Hill, 9th Edition

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester - III

ANALOG ELECTRONIC CIRCUITS LAB

(Common to	EI, B	M &	ML)
------------	-------	-----	-----

	`	 	
Subject Code	: 15 EI/BM/ML L37	IA Marks	: 20
Number of Practical	: 03	Exam Marks	: 80
Hours/Week			
Total Number of	: 42	Exam Hours	: 03
Practical Hours			

Credits - 2

Course Objectives:

This laboratory course enables students to get practical knowledge & experience in design, assembly and evaluation/testing of

- Rectifier circuits without and with filter
- BJT as Amplifier without and with feedback
- JFET Characteristics and as Amplifier.
- MOSFET Characteristics
- BJT as Power Amplifiers
- Oscillators using BJT and FET for frequency generation
- UJT characteristics
- Verification of Theorems and applications in practical fields

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, and L6 - Creating

	Laboratory Experiments Revised Bloom's					
NOT	E: The experiments are to be carried using discrete components	Taxonomy				
	only	(RBT)Level				
1.	To design and testing of the following rectifiers with and without filters: (a) Full Wave Rectifier (center tap) (b) Bridge Rectifier.	L3, 14, L5, L6				
2.	To plot characteristics of UJT and to determine its intrinsic stand-off ratio.	L1, L2, L3, L4				
3.	To design and test the common emitter amplifier (voltage divider bias) without feedback and determine input, output impedance, gain and bandwidth.	L3, 14, L5, L6				
4.	To design and test the Emitter follower amplifier (BJT) using voltage divider bias and determine input, output impedance, gain and bandwidth.	L3, 14, L5, L6				
5.	To plot the Drain and Transfer characteristic for the given FET and to find the Drain Resistance and Trans-conductance.	L1, L2, L3, L4				
6.	To design, test and to plot the frequency response of Common Source JFET/MOSFET amplifier, and to determine its bandwidth.	L3, 14, L5, L6				
7.	To plot the input and output characteristics of n-channel MOSFET and calculate its parameters, namely; drain resistance, mutual conductance and amplification factor.	L1, L2, L3, L4				

8. Wiring and testing of Complimentary symmetry class B push pull power amplifier and calculation of efficiency.	L1, L2, L3, L4
To design and test the RC-Phase shift Oscillator using BJT for the given frequency.	L3, L4, L5, L6
10. To design and test the following tuned oscillator circuits for the given frequency. (a) Hartley Oscillator using BJT (b) Colpitts Oscillator using FET.	L3, L4, L5, L6
11. Testing of crystal oscillator and to determine its frequency of oscillation.	L1, L2, L3, L4
12. Verification of Thevenin's theorem and Maximum Power Transform theorem for the given DC circuits.	L1, L2, L3, L4

- Acquire the Working principles, characteristics and basic applications of BJT and FET.
- Modeling of BJT/FET for analysis
- Able to design Single stage, Multistage amplifier, with and without feedback
- Able to analyze Frequency response of BJT and FET.
- Acquire the knowledge of Power amplifiers, operation, and able to design power amplifier.
- Apply the knowledge gained in the design of BJT/FET circuits in Oscillators to generate different frequencies and their applications.
- Knowledge of UJT characteristics and its application.
- Applications of theorems in various practical fields.

Graduate Attributes (as per NBA)

- Engineering Knowledge.
- Problem Analysis.
- Design / development of solutions (partly)

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Students are allowed to pick one experiment from the lot.
- 3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

- 1. Electronics Lab Manual by K. A. Navas, Volume I, PHI, 5th Edition, 2015, ISBN:9788120351424.
- 2. Electronics Laboratory Primer A Design Approach by S.Poorna Chandra, B.Sasikala, S Chand Pub.

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester - III DIGITAL DESIGN AND HDL LAB							
(Common to EI, BM & ML) Subject Code : 15 EI/BM/ML L38 IA Marks : 20							
Number of Practical	: 03		Exam Marks	: 80			
Hours/Week							
Total Number of	: 42		Exam Hours	: 03			
Practical Hours	Practical Hours						
Credits - 2							

Course Objectives: This course will enable the students to

- The operation of various logic gates and digital circuits and write the Verilog code.
- Design of logic circuits for combinational and sequential circuits and write Verilog code.
- Synthesis of digital circuits, FFs, shift registers and counters using ICs.
- To use FPGA/CPLD kits for downloading the Verilog code and test the output.

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, and L6 - Creating

Labor Note:	atory Experiments: (1) Use discrete components to test and verify the logic gates.	Revised Bloom's Taxonomy
output	(2) Use FPGA/CPLD kits for down loading the Verilog code and test the	(RBT) Level
1.	Simplification, realization of Boolean expressions using logic gates/Universal gates	L1,L2,L3
2.	To design and implement a) Adder/Subtractor – Full/half using logic gates. b) 4-bit Parallel Adder/ subtractor using IC 7483.	L3, L4, L5,L6
3.	To realize a) BCD to Excess-3 code conversion and vice versa b) Binary to Gray code conversion and vice versa	L2,L3, L4
4.	To realize a) 4:1 Multiplexer using gates b) 1:8 Demux c) Priority encoder and 3:8 Decoder using IC74138 d) One / Two bit comparator	L2, L3, L4
5.	To realize the following flip-flops using NAND Gates (a) T type (b) JK Master slave (c) D type	L2, L3, L4
6.	To realize the 3-bit counters as a sequential circuit and Mod-N Counter design (7476, 7490, 74192, 74193)	L2, L3, L4
7.	Adder/Subtractor – Full/half using Verilog data flow description	L2, L3, L4
8.	Code converters using Verilog Behavioral description a) Gray to binary and vice versa b) Binary to excess3 and vice versa	L2, L3, L4
9.	Multiplexers/decoders/encoder using Verilog Behavioral description - 8:1 mux, 3:8 decoder, 8:3 encoder, Priority encoder - 1:8 Demux and verify using test bench	L2, L3, L4

- 2-bit Comparator using behavioral description	
10. Flip-flops using Verilog Behavioral description	L2, L3, L4
a) JK type b) SR type c) T type and d) D type	
11. Counter up/down (BCD and binary), sequential counters using Verilog	L2,L3, L4
Behavioral description	
12. Interface experiments: (a) Stepper motor (b) Relay (c) Waveform generation	L2,L3, L4
using DAC	

- Realize Boolean expression using Universal gates / basic gates using ICs and Verilog
- Demonstrate the function of adder/subtractor circuits using gates/ICs & Verilog.
- Design and analyze the Comparator, Multiplexers Decoders, Encoders circuits using ICs and Verilog.
- Design and analysis of different Flip-flops and counters using gates and FFs
- Able to use FPGA/CPLD kits for down loading Verilog codes for shift registers and counters and check output.

Graduate Attributes (as per NBA)

- Engineering Knowledge.
- Problem Analysis.
- Design/Development of solutions

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Students are allowed to pick one experiment from the lot.
- 3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero

Text Books:

- 1. Digital Principles and Design Donald D Givone, 12th reprint, TMH, 2008
- 2. HDL Programming VHDL and Verilog By Nazeih M. Botros, 2009 reprint, Dreamtech press.

- 1. Digital Logic Applications and Design by John M Yarbrough, Thomson Learning, 2001
- 2. Fundamentals of HDL- Cyril P R Pearson/Sanguin 2010

IV SEMESTER

В.Е. Е			System (CBCS)	eering (EI)	
	ENGINEERIN			IV	
0.11 . 0.1		on to All	Branches)	1 20	
Subject Code	: 15MAT41		IA Marks	: 20	
Number of Lecture Hours/Week	: 04		Exam Marks	: 80	
Total Number of Lecture Hours	: 50		Exam Hours	: 03	
Lecture Hours		Credits -	4		
Course Objectives: T	his course will enab				
Revised Bloom's Tax				erstanding, L3	- Applying,
L4 – Analyzing, L5 –	Evaluating, and Lo -	· Creating		1	Revised
	Modules			Teaching Hours	Bloom's Taxonomy (RBT)Leve
Module -1				10 Hours	
36.11.0					
Module -2				10 Hours	
Module -3				10 Hours	

Module -4		
	10 Hours	
	10 110 015	
	<u> </u>	
Module -5		
	40.77	
	10 Hours	
Course Outcomes: After studying this course, students will able to:		
Contrate Att 1 And (conser NDA)		
Graduate Attributes (as per NBA)		
Question Paper Pattern:		
The question paper will have TEN questions.		
Each full question carry16 marks		
• There will be TWO full questions (with maximum of FOUR sub questions) from each m	nodule.
• Each full question will have sub questions covering all the topics under a r		
• The students will have to answer FIVE full questions, selecting ONE full of		each module.
Text Books:	•	
Deference Dealers		
Reference Books:		

IV SEMESTER

B.E. Electronics and Instrumentation Engineering (EI)Choice Based Credit System (CBCS)

Semester-IV

SIGNAL CONDITIONING AND DATA ACQUISITION CIRCUITS

(Common to EI, BM & ML) [Revised]

		,	/ [
Subject Code	: 15 EI/BM/ML42		IA Marks	: 20
Number of Lecture	: 04		Exam Marks	: 80
Hours/Week				
Total Number of	: 50		Exam Hours	: 03
Lecture Hours				

Credits – 4

Course Objectives: This course will enable the students to

- Define and describe Op Amp, basic concepts, characteristics and specifications
- Gain knowledge about Linear and nonlinear applications op-amp.
- Design and develop circuits like, amplifiers, filters, Timers to meet industrial requirements.
- Get a firm grasp of basic principles of op-amp.

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, and L6 – Creating

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT)Level
Module -1	10 Hours	L1,L2, L3,L4
Introduction to Operational Amplifiers: Introduction, Block schematic of an Op-amp, Power supply connections, Characteristics of an Ideal OP-AMP, Inverting Amplifier, Non-inverting Amplifier, Voltage follower, Differential Amplifier, CMRR. (Relevant problems).		
Operational Amplifier Characteristics: DC characteristics – Input bias current, Input offset current, Input offset voltage, Total output offset voltage, Thermal drift. AC characteristics – Frequency response, Slew rate, PSRR. Basic op-amp applications – Scale changer/Inverter. Summing amplifier: Inverting summing amplifier, Non-inverting Summing amplifier, Subtractor, Instrumentation Amplifier. (Relevant problems).		
M. 1 1. 2	10 11	11121214
Module -2 Operational Amplifier Applications: V – I and I – V converter, Opamp circuit using diodes, sample and hold circuit, Differentiator and Integrator.	10 Hours	L1,L2, L3,L4
Comparator and waveforms generator: Comparator, Regenerative comparator (Schmitt Trigger), Astable mutivibrator, Monostable		

multivibrator and Triangular waveform generator. Phase shift oscillator, Wien bridge oscillator. (Relevant problems).		
Module -3 Voltage Regulators: Introduction, Series Op-amp regulator, IC voltage regulators, 723 general purpose regulators, switching regulator. Active filters: First and Second order LPF, First and Second orders HPF, Band Pass Filters, Band Reject filters. (Design examples).	10 Hours	L1,L2, L3,L4
Module -4 555 Timer: Description of Functional Diagram, Monostable operation, Applications of Monostable Multivibrator: Frequency Divider & Pulse Width Modulation. Astable operation, Applications of Astable Multivibrator: FSK Generator and Pulse Position Modulation. Phase Locked Loops: Basic Principles, Analog phase Detector/comparator, Voltage controlled oscillator. PLL applications: Frequency Multiplication/Division, Frequency translation, FM demodulation.	10 Hours	L2,L3,L4, L5, L6
Module -5 Data Acquisition Systems: Types of instrumentation systems, Components of analog data acquisition system, Digital data acquisition system, Use of recorders in digital systems, Digital recording systems. Data Converters: Digital to Analog Converters: Basic DAC techniques, Weighted Resistor DAC, R – 2R Ladder DAC, DAC 0800 (Data sheet: Features and description only). Analog to Digital Converters: Functional diagram of ADC, Flash ADC, Counter type ADC, Successive approximation ADC, Dual slope ADC. ADC 0809 (Data sheet: Features, specifications and description only), DAC/ADC specifications.	10 Hours	L2, L3,L4, L5, L6

- 1. Understand the basic principles and operation of op-amp.
- 2. Design and develop circuits to meet the practical applications
- 3. Implement and integrate the op-amp circuits in electronic gadgets.

Graduate Attributes (as per NBA)

- Engineering knowledge
- Problem analysis
- Design & development of solutions
- Investigation of Complex Problem

Question Paper Pattern:

• The question paper will have TEN questions.

- Each full question carry 16 marks
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. "Linear Integrated Circuits", D. Roy Choudhury and Shail B. Jain, 4th edition, Reprint 2010, New Age International. (Module -1,2,3,4 & 5)
- 2. "Op Amps and Linear Integrated Circuits", Ramakant A. Gayakwad, 4th edition, PHI (Module-3)
- 3. "A course in Electrical & Electronic Measurements & Instrumentation", A K Sawhney, Dhanpat Rai Publications, 19th edition, 2011.(Module-5)

- 1. "Operational Amplifiers and Linear Integrated Circuits", Robert. F. Coughlin & Fred. F. Driscoll, PHI/Pearson, 2006
- 2. "Op Amps and Linear Integrated Circuits", James M. Fiore, Thomson Learning, 2001
- 3. "Design with Operational Amplifiers and Analog Integrated Circuits", Sergio Franco, TMH, 3e, 2005

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester - IV							
	EMBEDDED CONTROLLERS						
	(Common	to EI,	BM & ML)				
Subject Code	: 15 EI/BM/ML 43		IA Marks	: 20			
Number of Lecture	: 04		Exam Marks	: 80			
Hours/Week	Hours/Week						
total number of	: 50	1	exam hours	: 03			
lecture hours							

Credits - 4

Course Objectives: This course enables students to understand:

- Basics of Microprocessor and Microcontroller
- 8051 Microcontroller architecture and Pin description
- 8051 Addressing modes and instruction set
- Programming of on-chip peripherals in 8051
- Design and develop applications using 8051 Assembly language and C program.
- MSP 430 Microcontroller architecture
- On-chip peripherals and program using Assembly language and C.

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, and L6 - Creating

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT)Level
Module -1 Microprocessor and Microcontrollers: Introduction: Microprocessor and Microcontroller, Microprocessor survey, RISC and CISC, CPU Architecture, Harvard and Von-Neumann, CPU Architecture. 8051 Microcontroller Architecture. Pin functions organizations Input/ Output pins, ports and circuits. Internal and External memory Architecture. 8051 Reg. banks and stack, 8051 flag bits and PSW Register. Special function Registers. Timer /Counter, Serial data input/ output, Interrupts, program counter and ROM space in the 8051.	10 Hours	L1,L2
Module -2 Addressing modes directives instruction set of 8051 Microcontroller. Immediate and Register addressing modes. Accessing memory using various addressing modes. Bit addressing for I/o and RAM 8051 data types and directives. Jump Loop and CALL Instructions Arithmetic and Logic Instructions and programming I/o port programming. Assembly Language programs using various Instructions.	10 Hours	L1,L2

Module -3 8051 programming in C and interfacing. Data types and time delay in 8051 C, I/o programming, Logic operation, data conversion programs, accessing Code ROM Space, data serialization. 8051 interfacing to LCD and key board, DAC, stepper motor, DC Motor, Parallel and serial ADC. Elevator.	10 Hours	L2,L3,L4
Module -4 Timer/ Counter, Serial communication and Interrupts in 8051. Programming 8051 timer/ counter, programming timer 0 and 1 in 8051 C, Basics of serial communication, 8051 connections to RS-232. 8051 serial port programming in assembly and C. 8051 Interrupts, Programming Timer Interrupts, External hardware Interrupts and serial communication Interrupts. Interrupts priority & Interrupt programming in C.	10 Hours	L2,L3,L4,L 5
Module -5 Introduction to Advanced Microcontrollers. Salient Features of Advanced Microcontrollers. MSP430F2013 Architecture and pin functions, Memory, Clock Generator, CPU Registers, Addressing modes, Instruction set and emulated Instruction set. Development Environment. Aspects of C for embedded system, Introduction to MSP 430 starter kit, parallel ports.	10 Hours	L1,L2,L3

- Learn architecture of 8051 and MSP 430.
- Learn programming skills using Assembly language and C
- Design and interfacing of microcontroller based embedded systems.
- Build projects

Graduate Attributes (as per NBA)

- Engineering Knowledge
- Problem Analysis
- Design and Development of solutions
- Modern Tool usage

Question Paper Pattern:

- The question paper will have TEN questions.
- Each full question carry 16 marks
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. "The 8051 Microcontroller and Embedded systems-using assembly and C", Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinaly,PHI,2006/pearson,2006
- 2. "MSP430 Microcontroller Basics" John H. Davis, Elsevier 2010.
- 3. "Embedded Systems Design using the TI MSP430 series", Cris Nagy, Newnes, Elsevier.

- 1. "The 8051 Microcontroller architecture. Programming and applications", Kenneth J Alyala Thomson learning 2005.
- 2. "The 8051 Microcontroller: Hardware, Software and Applications" V. Udhayashankara and MallikarjunaSwamy, TMH., 2009.

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester - IV					
CONTROL SYSTEMS (Common to EI & BM)					
Subject Code	: 15 EI/BM 44		IA Marks	: 20	
Number of Lecture Hours/Week	: 04		Exam Marks	: 80	
Total Number of : 50 Exam Hours : 03 Lecture Hours					
Credits - 4					

Course Objectives: This course will enable the students to

- Understand the basic concepts & mathematical modeling of systems
- Draw block diagram & reduction for a given system
- Obtain Transfer functions by reduction and Signal Flow graph techniques.
- Analyze the system response in time and frequency domain
- Understand and Design of control systems using state space analysis

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, and L6 - Creating

Modules	Teachin g Hours	Revised Bloom's Taxonomy (RBT) Level
Modeling of Systems and Block diagram: Introduction to Control Systems, Types of Control Systems, with examples. Concept of mathematical modeling of physical systems- Mechanical, Translational (Mechanical accelerometer, systems excluded), and Rotational systems, Analogous systems based on force voltage analogy and force current analogy. Introduction to Block diagram algebra. Numerical problems on all topics.	10 Hours	L ₁ , L ₂ , L ₃ , L ₄
Module -2 Signal Flow graph: Introduction to Signal Flow graph, Mason's gain formula. Obtaining Transfer functions for the given SFG using Mason's gain formula. Time response analysis: Introduction. Standard test signals, response of first order & second order systems for unit step input. Steady state errors & Error constants. Numerical problems on all topics.	10 Hours	L ₁ , L ₂ , L ₃ , L ₄
Module -3 Concepts of stability: The Concept of stability. Necessary conditions for stability. Hurwitz stability criterion. Routh stability criterion. Relative stability analysis using RH Criterion. The Root Locus Technique: Introduction. Root locus concepts.	10 Hours	L2, L3, L4, L5

Construction of most losi Stability analysis using Doct losses		
Construction of root loci. Stability analysis using Root locus		
Technique Numerical problems on all topics.		
Module -4		
Frequency domain Analysis: Introduction to frequency domain		
analysis, Correlation between time & frequency response, Bode		L2, L3, L4,
plots. Numerical problems on all topics.	10 Hours	L2, L3, L4,
Polar Plot: Introduction to Polar plot and Nyquist plots, Nyquist		L3
stability criterion. Stability analysis using Polar plot.		
Numerical problems on all topics.		
Module -5		
State space Analysis: Concept of state, state variables and state		
model. State diagrams and State models for Linear continuous-time		
systems (Electrical systems): State space representation using		
Physical and Phase variables. Derivation of transfer functions from	10 Hours	L2, L3, L4,
the state model. Numerical problems on all topics.	10 Hours	L5
Solution of state equations: Solutions of homogeneous and Non-		
homogeneous state equations. Properties of state transition matrix,		
computation of state transition matrix by matrix exponential and		
Laplace transform method. Numerical problems		
C O 4 AC 4 1 1 4 11 11 4		

- Apply modeling knowledge in implementation physical systems.
- Understand the reduction of block diagram & analyze using Signal flow graph.
- Comment on performance of a system by evaluating various parameters.
- Model a system by applying the concept of State Space analysis
- Design and develop portable control systems

Graduate Attributes (as per NBA)

- Engineering knowledge
- Problem analysis
- Design & Development of Solutions
- Investigation of Complex Problem

Question Paper Pattern:

- The question paper will have TEN questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. "Control Systems Engineering", I.J. Nagarath and M. Gopal ,New Age International (P) Limited, Publishers, Fifth edition 2012.
- 2. "Modern Control Engineering", K. Ogata, Pearson Education Asia/PHI, 4th Edition, 2002.

- 1. "Automatic Control Systems", Benjamin C. Kuo, John Wiley India Pvt. Ltd., 8thEdition, 2008.
- 2. "Feedback and Control System", Joseph J Distefano III et al., Schaum's Outlines, TMH, 2nd Edition 2007.

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester - IV				
PROCESS INSTRUMENTATION				
: 15EI45		IA Marks	: 20	
: 04		Exam Marks	: 80	
: 50		Exam Hours	: 03	
	Choice Based (Sen PROCESS INS 15EI45 104	Choice Based Credit S Semester - PROCESS INSTRU : 15EI45 : 04	Choice Based Credit System (CBCS) Semester - IV PROCESS INSTRUMENTATION : 15EI45 : 04 IA Marks Exam Marks	

Credits - 4

Course Objectives:

- To discuss the principle, design and working of transducers/sensors for the measurement of temperature, flow, vibration, density, viscosity, humidity and moisture.
- To provide the basic knowledge in selection of appropriate transducers/sensors for the measurement of above parameters based on their specifications, advantages and limitations.

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, and L6 - Creating

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT)Level
Measurement of Temperature: Introduction, temperature scales, mechanical temperature sensors, resistance type temperature sensors, platinum resistance thermometer, thermistors (principle, types & characteristics), thermocouples, solid state sensors – principle and working, brief discussion on AD590, LM35. Quartz thermometer, Calibration of thermometers. Radiation Methods of Temperature Measurement: Introduction, Radiation detectors-Thermal & photon (principle & working in brief), Automatic Null balance Radiation thermometer, Disappearing filament optical pyrometer, Two-colour radiation thermometer, Blackbody-Tipped Fiber-Optic Radiation thermometer, Fluoroptic Temperature Measurement	10 Hours	L1, L2, L3, L4
Module -2 Flow Measurement : Introduction, Classification of Flow Meters, Head type flow meters, Rotameter, Electromagnetic Flow Meter, Mechanical Flow Meters, Anemometers, Ultrasonic flow meters – Doppler shift type (principle, working & derivation of Δf), Transit time ((principle, working & derivation of ΔT), Vortex flow meters, Thermal flow meter, Laser anemometer, Rotor torque mass flow meter.	10 Hours	L1, L2, L3, L4
Module -3	10 Hours	L1, L2, L3,

Vibration Measurement: Introduction, Characteristics of vibration, Vibration sensing devices, Signal conditioners for vibration sensors, Shock measurements, System characteristics, Vibration exciters& Calibration. Measurement of Density: Definition & units of density and specific gravity, Liquid density measurement – Ball type, capacitance type, displacement type, hydrometers, oscillating coriolis, radiation type, sound velocity type. Gas density measurement – displacement type, electromagnetic suspension type.		L4
Module -4 Viscosity Measurement: Definition and units, selection of viscometer, viscometer applications. Laboratory Viscometers — Capillary, capillary extrusion, Saybolt viscometer, Falling ball, Rotational viscometer, Cone & plate viscometer. Industrial Viscometers - differential pressure continuous capillary viscometer, falling piston viscometer, single and two float viscometer, cone and plate plastometer, rotational viscometer, vibrating reed viscometer. Turbidity: Definition, transmission type turbidity meter, light scattering turbidity meter.	10 Hours	L1, L2, L3, L4
Module -5 Humidity Measurement: Definition and terminologies, dry and wet bulb psychrometers (Sling psychrometer), hair hygrometers, thin film capacitance humidity sensor, dew-point hygrometers, electrolytic hygrometers. Moisture Measurement: Definition and terminologies. Measurement of moisture in gases and liquids – Electrolytic hygrometer, capacitance hygrometer, impendence hygrometer, piezoelectric hygrometer, infrared absorption hygrometer. Measurement of moisture in solids – Nuclear moisture gauge, infrared absorption moisture gauge, capacitance moisture gauge, conductance moisture gauge.	10 Hours	L1, L2, L3, L4

- Explain the principle, construction/design and analyze the transducers/sensors for the measurement of temperature, flow, vibration, density, viscosity, humidity and moisture.
- Select the appropriate transducers/sensors based on the needs of the process.
- Install and analyze the transducers/sensors for the measurement of above parameters.

Graduate Attributes (as per NBA)

- Engineering knowledge
- Problem analysis
- Design & Development of Solutions
- Engineer and society
- Environment & sustainability
- Lifelong learning

Question Paper Pattern:

- The question paper will have TEN questions.
- Each full question consists of 16 marks.
- There will be 2 full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Instrumentation: Devices and Systems- C. S. Rangan, G. R. Sarma, V. S. V. Mani, 2nd Edition (32nd Reprint), McGraw Hill Education (India), 2014. [Module1- Measurement of temperature, Module 2, Module3- Measurement of vibration].
- 2. Measurement Systems Application and Design- Ernest O.Doeblin and Dhanesh N Manik, 5thEdition, McGraw Hill, 2007 [Module1- Radiation Methods of Temperature Measurement].
- 3. Process Measurement Instrument Engineers Handbook- BelaG.Liptak, Revised Edition, Chilton Book Company, 1982. [Module 3 Measurement of Density, Module 4]
- 4. Industrial Instrumentation K. Krishnaswamy and S. Vijayachitra, New Age International Pub., 2005. [Module 5]

- 1. Transducers and Instrumentation D.V.S.Murty, 2nd Edition, PHI, 2009.
- 2. Introduction to Measurements and Instrumentation-A. K. Ghosh, 2nd Edition, PHI, 2007
- 3. Instrumentation Measurement and Analysis- B.C.Nakra and K.K.Choudhry, 3rd Edition, McGraw Hill Education (India) Pvt.Ltd. 2009.

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester – IV (Elective-II)

SCIENTIFIC AND ANALYTICAL INSTRUMENTATION

(Common to EI, BM & ML)				
Subject Code	: 15 EI/BM/ML 46		IA Marks	: 20
Number of Lecture	: 04		Exam Marks	: 80
Hours/ Week				
Total Number of	: 50		Exam Hours	: 03
Lecture Hours				

Credits - 4

Course Objectives:

- To introduce the basic concept of qualitative and quantitative analysis of a given sample.
- To Impart various spectroscopic techniques and its instrumentation.
- To Impart the concept of separation science and its application.
- To impart methods of Industrial analyzers and its application.

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, and L6 - Creating

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT)Level
Module -1 An introduction to instrumental methods: Terms associated with Chemical analysis, Classification of instrumental techniques, A review of important consideration in analytical methods, Basic functions of instrumentation, Nature of EM radiation, EM spectrum. Atomic energy levels, Molecular electronic energy levels, vibrational energy levels, Fundamental Levels of photometry, IR Spectroscopy: Basic Components of IR Spectrophotometers, Fourier Transform IR Spectroscopy	10 Hours	L1, L2
Module -2 UV and visible Spectrometers —instrumentation: Radiation Sources, Wavelength selection, Detector, Readout modules, Instruments for absorption photometry	10 Hours	L1, L2
Module -3 Flame emission and atomic absorption spectroscopy: Introduction, Instrumentation for flame spectrometric methods, Flame emission spectrometry, atomic absorption spectrometry, Atomic fluorescence spectrometry, Interferences associated with Flames & furnaces, applications, comparison of FES and AAS	10 Hours	L1, L2

Module -4 Gas Chromatography: Chromatograph, Basics parts of a chromatograph, Methods of measurements of peak areas, HPLC: HPLC Instrumentation, Mobile –phase delivery system sample introduction, separation of columns, Detectors – Ultraviolet Photometers & Spectrophotometers, electro chemicals detector (amperometric detector), Differential refractometers	10 Hours	L1, L2, L3
Module -5 Blood analyzer: Introduction, Blood pH measurements, measurement of blood Pco ₂ , Po ₂ , A Complete blood gas analyzer. Air pollution monitoring instruments Carbon monoxide, Sulphur dioxide, Nitrogen oxides, Hydrocarbons Ozone, automated wet chemical air analysis, water pollution monitoring instruments.	10 Hours	L1, L2, L3, L4

Course Outcomes:

- 1. The students get well versed with the principle, construction and working of various analytical instrumentation.
- 2. Students get detailed information about the application of analytical techniques in medicine, Industry, etc.

Graduate Attributes (as per NBA)

- Engineering Knowledge
- Problem Analysis
- Life-long Learning

Ouestion Paper Pattern:

- The question paper will have TEN questions.
- Each full question carry16 marks
- There will be TWO full questions (with maximum of FOUR sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Instrumental Methods of Analysis, 7th edition. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, CBS Publishing & Distribution (Module 1, Module 2, Module 3, Module 4 HPLC)
- 2. Handbook of Instruments R.S. Khandpur, Tata McGraw Hill (Module 1-IR Spectroscopy, Module 4, Module 5)

- 1. Braun R.D., Introduction to Instrumental Analysis, Mc Graw –Hill Singapore, 2006.
- 2. Frank G. Kerry Industrial Gas Handbook: Gas Separation and Purification, Taylor and francis group, 2007.
- 3. Principles of Instrumental Analysis 5th Edition Douglas A. Skoog, F. James Holler, Timothy A. Niemen, Thomason Brooks/ Cole

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester - IV					
		ONTROLLERS LA	R		
		to EI, BM & ML)			
Subject Code	: 15 EI/BM/ML L47	IA Marks	: 20		
Number of Practical	: 03	Exam Marks	: 80		
Hours/Week					
Total Number of	: 42	Exam Hours	: 03		
Practical Hours					
	C	redits - 2			
Course Objectives:					
This laboratory course					
	, ,	programs for 8051 and N	1SP430).	
	vare modules to Microc				
		controller 8051 and MSP4			
	_	Remembering, L2 – Unde	erstand	ing, L3 - Applying,	
·	Evaluating, and L6 - Cr	reating			
	Laboratory Experiments Note: Software and Hardware program using KEIL software and MSP 430			Revised Bloom's	
IDE.	Taxonomy (RBT)Level				
Software program us	ing 2051 uc			(KD1)Level	
Simple Assembly Lang	•				
	B051 in Block, Move, E	xchange			
		smallest element in an ar	rav.		
	or Hex and BCD up/ do		iuj.		
	gical Instructions. (Bit			10 10 14	
5. Subroutines using CALL and RETURN instructions.				L2, L3, L4	
6. Code Conversions> ASCII to Decimal, Decimal to ASCII, BCD					
to ASCII					
7. Programs to generate delay, programs using serial port and on chip					
timer/ counter.					
Software program us	ing MSP 430 IDE				
1 0	O	r data transfer, Block Mo	ove in	L2, L3, L4	
an array.			==, ==, == :		
Hardware programm	ning (using 8051)				
		controller with C Program	1.		
10. DC Motor Interface to 8051 Microcontroller with C Program					
11. DAC Interface for to generate sine wave, square wave, triangular				L3, L4, L5	
wave, Ramp wa					
	12. Keyboard Interfacing.				
13. ADC Interfacing					

Course Outcomes: After the completion of this Laboratory course, students will be able to:

- Get hands-on exposure in 8051 and MSB 430 platform.
- Enhance programming skills using Assembly language and C.
- Design and interfacing of microcontroller based embedded systems.
- Build projects

Graduate Attributes (as per NBA)

- Engineering Knowledge
- Problem Analysis
- Design and Development of solutions
- Modern Tool usage
- Individual and Team work

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Students are allowed to pick one experiment from the lot.
- 3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

- 1. "The 8051 Microcontroller and Embedded systems-using assembly and C", Muhammad AliMazidi and Janice Gillespie Mazidi and Rollin D. McKinaly,PHI,2006/pearson,2006
- 2. "MSP430 Microcontroller Basics" John H. Davis, Elsevier 2010.
- 3. "Embedded Systems Design using the TI MSP430 series", Cris Nagy, Newnes, Elsevier.
- 4. "The 8051 Microcontroller architecture. Programming and applications", Kenneth J Alyala Thomson learning 2005.

B.E. Electronics and Instrumentation Engineering (EI) Choice Based Credit System (CBCS) Semester - IV				
INSTRUMENTATION AND MEASUREMENT- LAB				
Subject Code	: 15EIL48		IA Marks	: 20
Number of practical	: 03		Exam Marks	: 80
Hours/Week				
Total Number of	:42		Exam Hours	: 03
practical Hours				
Credits - 2				

Course Objectives: This Lab course will enable the students to

- Impart the working principle of sensors and transducer
- Testing the response and plot the characteristics of different transducers
- Interpret and analyze experimental results with theoretical concepts.
- Calibrate the sensors/transducers
- Design the signal conditioning circuits and to make the transducer output compatible to interface with other devices
- Study and interpret data sheets of different transducers to select the suitable transducer for particular application and safe operation.

Revised Bloom's Taxonomy Levels: L1 – Remembering, L2 – Understanding, L3 – Applying, L4 – Analyzing, L5 – Evaluating, and L6 - Creating

LIST OF EXPERIMENTS	Revised Bloom's Taxonomy (RBT) Level
Displacement measurement using LVDT	L1, L2, L3, L4
2. Temperature measurement using RTD, Thermistor and Thermocouple, and finding their sensitivity.	L1, L2, L3, L4
3. Temperature measurement using AD590 / LM34.	L1, L2, L3, L4
4. Characteristics of LDR, Photodiode & Phototransistor by variable illumination & variable distance.	L1, L2, L3, L4
5. Measurement of unknown resistance by Wheatstone bridge & finding the sensitivity of the bridge.	L1, L2, L3, L4
6. Measurement of low resistance using Kelvin double bridge.	L1, L2, L3, L4
7. Measurement of self-inductance using Maxwell's bridge.	L1, L2, L3, L4
8. Measurement of inductance and internal resistance of a choke by three voltmeter method.	L1, L2, L3, L4
9. Measurement of unknown capacitance using Schering's bridge.	L1, L2, L3, L4
10. Characteristics of pressure transducer.	L1, L2, L3, L4
11. Characteristics of Load cell and Cantilever beam using Strain gauge (Quarter, Half and Full bridge)	L1, L2, L3, L4
12. Characteristics of potentiometric transducer	L1, L2, L3, L4

Course Outcomes: After studying this course, students will able to:

• Analyze the response and plot the characteristics of temperature measurement transducers such as RTD, Thermistor, and Thermocouple & AD590.

- Analyze the response and plot the characteristics of displacement measuring transducers such as LVDT and Potentiometric transducer.
- Analyze the response and plot the characteristics of strain gauge type load cell.
- Analyze the response and plot the characteristics of pressure transducer.
- Measure unknown values of resistance, capacitance and Inductance using different bridges.
- Design, build and test the circuits for practical applications

Graduate Attributes (as per NBA)

- Engineering Knowledge.
- Problem Analysis.
- Design / development of solutions (partly)
- Interpretation of data

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Students are allowed to pick one experiment from the lot.
- 3. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

- 1. Measurement systems application and design by E.O. Doebline 4th Edition, TMH.
- 2. Instrumentation for Process Measurement by Norman. A. Anderson, 3rd Edition, CRC
- 3. Principle of Measurement System by John. P. Bentley, 3rd Edition, Pearson, 2007
- 4. Process Measurement by Bela G. Liptak